
WORKING WITH DELEGATES

Gulnaz Zhomartkyzy

D. Serikbayev EKSTU

What You will learn in this lesson
 Understanding delegates and predefined

delegate types
 Using anonymous methods
 Using anonymous methods including

lambda expressions

Delegates

A delegate is a type that defines a method

signature.

In C++, for example, you would do this with a

function pointer.

In C# you can instantiate a delegate and let it

point to another method. You can invoke the

method through the delegate.

[accessibility] delegate returnType DelegateName([parameters]);

1.1 The following code shows how you can

define a delegate type.

Here’s a breakdown of that code:

 accessibility: An accessibility for the delegate type such

as public or private.

 delegate: The delegate keyword.

 returnType: The data type that a method of this delegate

type returns such as void, int, or string.

 delegateName: The name that you want to give the

delegate type.

 parameters: The parameter list that a method of this

delegate type should take.

private delegate float FunctionDelegate(float x);

private FunctionDelegate TheFunction;

1.Example 1.

For example, the following code defines a delegate type

named FunctionDelegate.

This type represents methods that take a float as a

parameter and returns an integer.

After you define a delegate type, you can create a variable

of that type.

The following code declares a variable named

TheFunction that has the FunctionDelegate type:

Later you can set the variable equal to a method that has

the appropriate parameters and return type. The following

code defnes a method named Function1.

// y = 12 * Sin(3 * x) / (1 + |x|)

private static float Function1(float x)

{

return (float)(12 * Math.Sin(3 * x) / (1 +

Math.Abs(x)));

}

The form’s Load event handler then sets the variable

TheFunction equal to this method.

// Initialize TheFunction

private void Form1_Load(object sender, EventArgs e)

{ TheFunction = Function1;

}

After the variable TheFunction is initialized, the program

can use it as if it were the method itself.

For example, the following code snippet sets the variable

y equal to the value returned by TheFunction with parameter.

private void button1_Click(object sender, EventArgs e)

{

float y = TheFunction(1.23f);

textBox1.Text = y.ToString();

}

At this point, you don’t actually know which method is referred to by

TheFunction.

The variable could refer to Function1 or some other method, as long as

that method has a signature that matches the FunctionDelegate type.

Select a function from the program’s ComboBox
private void comboBox1_SelectedIndexChanged(object

sender, EventArgs e)

{ switch (comboBox1.SelectedIndex)

{ case 0:

TheFunction = Function1; break;

case 1:

TheFunction = Function2; break;

case 2:

TheFunction = Function3; break;

}

}

Forms with results.

1.3 Example 2.
Next listing shows an example of declaring a delegate and
calling a method through it.
Listing. Using a delegate

public delegate int Calculate(int x, int y);

public int Add(int x, int y) { return x + y; }

public int Multiply(int x, int y) { return x * y; }

public void UseDelegate()

{

Calculate calc = Add;

Console.WriteLine(calc(3, 4)); // Displays 7

calc = Multiply;

Console.WriteLine(calc(3, 4)); // Displays 12

}

1. 4 Anonymous Methods

An anonymous method is basically a method that doesn’t have a name.

Instead of creating a method as you usually do, you create a delegate that

refers to the code that the method should contain.

By using anonymous methods, you reduce the coding overhead in

instantiating delegates because you do not have to create a separate method.

You can then use that delegate as if it were a delegate variable holding a

reference to the method.

The following shows the syntax for creating an anonymous method.

delegate ([parameters]) { code... }

Here’s a breakdown of that code:

 delegate: The delegate keyword.

 parameters: Any parameters that you want the method to take.

 code: Whatever code you want the method to execute. The code can use a

return statement if the method should return some value.

// Create a delegate.

delegate void Del(int x);

// Instantiate the delegate using an anonymous method.

Del d = delegate(int k) { /* ... */ };

Example 1:

Example 2:

// Declare a delegate.

delegate void Printer(string s);

. . .

static void Main()

{

// Instatiate the delegate type using an anonymous method.

Printer p = delegate(string j)

{ System.Console.WriteLine(j);

};

// Results from the anonymous delegate call.

p("The delegate using the anonymous method is called.");

}

/* Output:

The delegate using the anonymous method is called.

public delegate void Action<in T1, in T2>(T1 arg1, T2 arg2)

1.5 Built-in Delegate Types

The .NET Framework defines two generic delegate types that you can

use to avoid defining your own delegates in many cases:

- Action and

- Func.

Action Delegates

The generic Action delegate represents a method that returns void.

Different versions of Action take between 0 and 18 input parameters.

The following code shows the defnition of the Action delegate that

takes two parameters:

public delegate TResult Func<in T1, in T2, out TResult>(T1 arg1,

T2 arg2)

Func Delegates

The generic Func delegate represents a method that returns a

value. As is the case with Action, different versions of Func take

between 0 and 18 input parameters.

The following code shows the defnition of the Func delegate

that takes two parameters:

2 Lambda Expressions

2.1 Lambda Expressions

Definition 1.

Anonymous methods give you a shortcut for creating a short

method that will be used in only one place. In case that isn’t short

enough, lambda methods provide a shorthand notation for creating

those shortcuts.

A lambda expression uses a concise syntax to create an

anonymous method.

Definition 2.

A lambda expression is an anonymous function that you can use

to create delegates or expression tree types. By using lambda

expressions, you can write local functions that can be passed as

arguments or returned as the value of function calls. Lambda

expressions are particularly helpful for writing LINQ query

expressions.

To create a lambda expression, you specify

1) input parameters (if any) on the left side of the

lambda operator =>, and

2) you put the expression or statement block on the

other side.

2 Lambda Expressions

https://msdn.microsoft.com/en-us/library/bb311046(v=vs.110).aspx

delegate int del(int i);

static void Main(string[] args)

{ del myDelegate = x => x * x;

int j = myDelegate(5); //j = 25

}

For example, the lambda expression x => x * x specifies a

parameter that’s named x and returns the value of x squared.

You can assign this expression to a delegate type, as the

following example shows:

Lambda expressions come in a few formats and several

variations. To make discussing them a little easier, the

following sections group lambda expressions into three

categories:

 expression lambdas,

 statement lambdas, and

 async lambdas.

Compare with the delegate using an

anonymous method:

Del d = delegate(int k) {/* ... */};

2 Lambda Expressions

(input parameters) => expression

2.2 Expression Lambdas

A lambda expression with an expression on the right side is

called an expression lambda. An expression lambda returns

the result of the expression and takes the following basic form:

(x, y) => x == y

The parentheses are optional only if the lambda has one

input parameter; otherwise they are required. Two or more

input parameters are separated by commas enclosed in

parentheses:

2 Lambda Expressions

(int x, string s) => s.Length > x

Sometimes it is difficult or impossible for the compiler to

infer the input types. When this occurs, you can specify the

types explicitly as shown in the following example:

() => SomeMethod()

Specify zero input parameters with empty parentheses:

2 Lambda Expressions

(input parameters) => {statement;}

2.3 Statement Lambdas

A statement lambda resembles an expression lambda

except that the statement(s) is enclosed in braces:

delegate void TestDelegate(string s);

…

TestDelegate myDel = n => { string s = n + " " +

"World"; Console.WriteLine(s); };

myDel("Hello");

The body of a statement lambda can consist of any

number of statements; however, in practice there are

typically no more than two or three.

2 Lambda Expressions

3 SUMMARY

This block is designed as a way for you to quickly study the key

points of this lesson.

Working with delegates

A delegate is a type that represents a kind of method. It defnes

the method’s parameters and return type.

Often the name of a delegate type ends with Delegate or

Callback.

You can use + and – to combine delegate variables.

For example, if a program executes the statement del3 = del1 +

del2,

then del3 will execute the methods referred to by del1 and del2.

If a delegate variable refers to an instance method, it executes

with the object on whose instance it was assigned.

3 SUMMARY

public delegate void Action<in T1, in T2>(T1 arg1, T2

arg2)

public delegate TResult Func<in T1, in T2, out

TResult> (T1 arg1, T2 arg2)

The .NET Framework defnes two built-in delegate types that

you can use in many cases: Action and Func. The following

code shows the declarations for Action and Func delegates that

take two parameters:

Func<float, float> function = delegate(float x)

{ return x * x; };

An anonymous method is a method with no name. The

following code saves a reference to an anonymous

method in variable function:

3 SUMMARY

Action note1 = () => MessageBox.Show("Hi");

Action<string> note2 = message => MessageBox.Show(message);

Action<string> note3 = (message) =>

MessageBox.Show(message);

Action<string> note4 = (string message) =>

MessageBox.Show(message);

Func<float, float> square = (float x) => x * x;

A lambda expression uses a concise syntax to create

an anonymous method. The following code shows

examples of lambda expressions:

3 SUMMARY

- An expression lambda evaluates a single expression

whose value is returned by the anonymous method.

- A statement lambda executes a series of statements. It

must use a return statement to return a value.

- An async lambda is a lambda expression that includes

the async keyword.

3 SUMMARY

